

【第95期】

高温超导涂层导体及其磁通钉扎的人工调控

中科院物理所超导国家重点实验室、学术服务部 主办 《物理学报》 | CPL | CPB |《物理》 协办

欢迎关注 欢迎投稿

- ▶ CPL, CPB 和《物理学报》被SCI收录, "中国科技期刊卓越行动计划"入选期刊。
- CPL的 Express Letters 栏目对标 PRL,质量高,发表快,国际推广。接收邮件投稿: zhaiz@iphy.ac.cn
- CPB和《物理学报》刊登中英文物理学优秀原创成果,物理学前沿研究领域专题与综述。
 《物理》是国内权威物理类中文科普期刊,集学科大家之力,为读者精心奉献高品质作品。

绕组线设计制造专家 Winding Wire Design And Manufacturing Experts

特高压输变电装备绕组线、高速动车组牵引变压器绕组线
超导磁体用超导绕组线缆系列产品

地址:江苏省无锡市锡山区东港镇勤工路22号 电话:0510-85212266 www.toly.com.cn

绕组线设计制造专家 Winding Wire Design And Manufacturing Experts

National Lab for Superconductivity Lecture Series

【第95期】

高温超导涂层导体及其磁通钉扎的人工调控

蔡传兵,上海大学理学院物理系教授,上海 市高温超导重点实验室主任。长期从事氧化 物超导材料及其薄膜异质结功能器件研究。

先后在中科院上海冶金所(现微系统所)、 日本大阪大学、日本铁道综合技术研究所、 英国伯明翰大学、德国莱布尼茨固体材料所 学习和工作。

中国电工学会理事、中国电子学会超导分会 委员、上海市真空学会理事。曾获上海浦江 人才、上海领军人才计划等支持。

主办 中科院物理所超导国家重点实验室、学术服务部 协办 《物理学报》 | CPL | CPB | 《物理》

中科院物理所国家超导重点实验室 超导基础理论与实验技术系列讲座 (No. 95)

高温超导涂层导体 及其磁通钉扎的人工调制

・上海大学理学院物理系、上海市高温超导重点实验室、上创超导
 ・ cbcai@t.shu.edu.cn; Tel: 13524190269

_ _ _ _ _ _

- 刘志勇、鲁玉明、郭艳群、白传易、李敏娟、范峰、周迪帆、曾志刚、陈静、杨召等
 @上海大学理学院物理系、高温超导重点实验室
- 张永军、菅洪彬、陆奇、张轩、豆文芝等 @上海上创超导科技有限公司
- 赵跃、洪志勇等 @上海超导科技股份有限公司
- 熊旭明、蔡渊等 @苏州新材料研究所
- 张喜泽、宗曦华等 @上海电缆研究所/上海国际超导科技有限公司

Resistance of Mercury Onnes (1911/4/8)荷兰Leiden大学教授(1913Nobel)

百年前发现、商业应用已半个世纪、大规模应用not yet

超导圣地Leiden: a typical university city, the oldest university (1575) in NL

20世纪初

永久气体

He的液

化

难题:

@2011 After 100th Anniversary

Superconducting Material Family: Old and Young !

LETTER

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov¹*, M. I. Eremets¹*, I. A. Troyan¹, V. Ksenofontov² & S. I. Shylin²

Nature 525(2015 Sept.)

BCS和Migdal-Eliashberg

Superconductivity at 250 K in lanthanum hydride under high pressures

A. P. Drozdov¹, P. P. Kong¹, V. S. Minkov¹, S. P. Besedin¹, M. A. Kuzovnikov^{1,6}, S. Mozaffari², L. Balicas², F. Balakirev³, D. Graf², V. B. Prakapenka⁴, E. Greenberg⁴, D. A. Knyazev¹, M. Tkacz⁵, and M. I. Eremets¹

Superconductor family*from single element to macromolecule*

HTS材料实用化的基本要素

▶ 本征特性

- ◆ 特定运行温度下的不可逆场
- ◆ 临界电流密度及其磁场依赖性
- ◆ 各向异性

▶ 晶界连接

晶界和晶内载流能力
 晶界弱连接情况
 J_c(θ) = J_c(0), θ < 4°

$$J_c(\theta) = J_c(0) \exp\left[-(\theta - \theta_0) / \theta_1\right], \quad \theta > 4^\circ$$

▶ 可控制备和机械性

- ◆ 柔韧性和致密化
- ▶ 材料和工艺成本
- ◆ 高密度可控的缺陷或无序(适度"脏")

▶ 环境友好性

主要实用超导材料一览:三维相图及外观形貌

(包括NbTi、MgB₂、Bi2223、RE123等)的临界温度 T_{c} (B,J)、上临界磁场 B_{c2} (T,J)和临界电流密度 J_{c}

低温超导线材/商业化成熟

金属 NbTi (Nb₃Sn etc.)

(T, H) 三维图。可见RE123在较大温度、磁场范围获得较高的临界电流密度(红色)

中温超导线材/商业化探索

化合物 MgB₂/Fe-based

Crisan, Vortices and Nanostructured Superconductors, Springer Series in Materials Science 261, 2017

常用实用化超导材料的外观形貌及截面图 蔡传兵等《科学通报》64(2019)827 9

Practical SC Materials vs. Operating Temperatures

Fundamental Challenges of Cuperate HTS Application

Jc limited by weak link@GBs → Layered structure → $\xi_{ab} = 1.3-3.5$ nm; $\xi_c = 0.2-1$ nm

$J_{c}(\vartheta) = J_{c}^{0} * \exp(-(\vartheta - 4^{\circ})/2.4^{\circ}) \text{ for } \vartheta > 4^{\circ}$

Giant flux motion by thermal

fluctuation

- high running temperature
- > Low pinning potential of single vortex($\sim \xi^n$)

HTS实用化基础问题(1): 晶界弱连接

Charging of CuO4 quares: screening L~ Interatomic d

Graser, Nature Phys 6 (2010) 609 Wolf, PRL, 108 (2012) 117002

Charge imbalance at the GB depresses J_c at the interface (t - J model calculations)

HTS实用化基础问题(1): 晶界弱连接

[B. Holzapfel et al., IEEE Trans. Appl. Supercond., 11, 3872-3875, 2001]

HTS实用化基础问题(2):复杂的磁热相和磁通运动

Electronic State Diagram for Cuprates

http://for538.wmi.badw-muenchen.de/

Magneto-thermal Phases for Cuprates

Leggett, Nature Phys., 2 (2006)134 Obradors, SuST, 27(2014)044003

HTS实用化基础问题(3): 磁传输各向异性

C. Cai et al., Phys. Rev. B. 70, 064504(2004): Phys. Rev. B. 70, 212501(2004)

> >Strongest tailoring of flux pinning occurs at *H*//*c*, while the highest J_c at H $\perp c$

HTS实用化基本应对措施: 晶界减小和高密度钉扎中心

High Jc-H of Melt-textured RE123 Bulk developed in 1990s

Architectures for HTS Coated Conductors

技术路线之: 按缓冲层织构的建立途径

Cai et al, Progress in Physics (Chinese) ,4(2007)467: Cai et al, Advance in China Materials, 30(2010)1

典型的组份结构和沉积速率 (以SuNAM为例)

SuNAM's 2G Wire Architecture Protecting layer (0.6 µm) DC sputter _____ Superconducting layer (1.2 ~ 1.8 μ m) RCE-DR Ag Barrier, Seed, IBAD& Buffer (D&M, 2009) Buffer layer ~20 nm sputter ReBCO Homoepi-MgO layer ~ 20 nm LaMnO IBAD-MgO layer ~ 10 nm IBAD Epi-MgO (sputter & IBAD-MgO Seed layer (Y₂O₃) E-beam) IBAD-MgO ~ 7 nm Diffusion barrier (Al_2O_3) Ag Y_2O_3 ~ 40 nm ReBCO Homo-epi Al_2O_3 Hastelloy C276 (Ni-alloy tape) Electro MgO LaMnO₃ or -polishing SUS-tape Process Speed Epi-MgO Hastelloy _____ Each Step R&D system ('08) Pilot system('09) or STS IBAD-MgO Al₂O₃ 210 m/hr 600 m/hr Typical I_c ~ 600 A/12 mm at 77 K self-field (J_c ~ > 4 MA/cm²) Y_2O_3 (Not to scale) Y203 (1 system) 500 m/hr SUNAN Al₂O₃ 360 m/hr IBAD-MgO 600 m/hr (1 system) Homo-epi MgO ~ 70 m/hr Hastelloy Buffer layer limits the

SUNAM

or STS

* 4 mm width equivalent.

~50 m/hr

speed.

LMO buffer

目标	材料和制造	薄膜沉积	单位宽	自主研发
	成本低	速率高	临界电流密度高	动态连续化装备
● ● ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 切模化生产	 ・低成本制备 缓冲层和超 导层 ・新基带、新 工艺降低双 基带成本 	 ・ 提高超导层、缓冲层生、缓冲层生、缓率 ・ 发展适于快速制备的缓冲层和超导层工艺与结构 	 通过增加膜 厚提高超导 传输能力 増加有效的 磁通钉扎中 心密度、提 高临界电流 	 ・ 设计和建立 拥有自主知 识产权的薄 膜动态沉积 系统 ・ 提高系统研 发和合成水 平

参见:《上海市第二代高温超导带材及其应用发展战略研究(2010-2020)》(2010/02)

Defective region

Annual production for a 300W PLD: >150 km*500 A

High quality GdBCO film grown under "overgrowth" mechanism

Mixed-landscape pinning centers in "fast grown" EuBCO films

KM-Long EuBCO tapes with high \textit{I}_{c} achieved on 30 and 50 μm substrates

Inclined nano-rods and high density of stacking faults co-exist throughout the film

Jiang G, Zhao Y, Zhu J, et al. Superconductor Science and Technology, 2020, 33(7): 074005.

HTS Coated Conductors @Suzhou Advanced Materials Institute

- Textured Oxide Buffers on Textured metallic tape via IBAD
- Epitaxial HTS Films on Textured Oxide Buffer via MOCVD

Protection and stabilization

- ◆ IBAD-MgO长带生产速率达到220m/h,平面内织构(30纳米 MgO) <5.5°的良率大于90%。
- ◆4mm年产能600公里, (5天/周, 50周/年)。1.4公里带子沉积 时间仅6.3小时, 准备时间38小时, 有很大的提升空间

可以为铁基超导长带的产业化提供准单晶织构的千米长带

开发准单晶IBAD-MgO工艺储备

平面内织构和外延MgO的关系

现在长带生产的工艺A 工艺B,840nm,纯平面外织构1度 外推到2000nm MgO,纯平面外织构~1度 工艺C,400nm,平面外织构<1度。

30nm MgO, 织构~5.2度 ———— 30nm MgO, 织构3.6度

HTS Coated Conductors @Shanghai University & Spinning-off Company, SCSC

34

- Textured Oxide Buffers on Textured or Untextured Tape via RABITS or IBAD
- Epitaxial HTS Films on Textured Oxide Buffer via MOD

Reel-to-Reel System Development in Past Ten Years

Research Level R2R Sputtering System

Industry-level Sputtering Production Line

Shanghai Municipal Key Project

Research Level R2R Solution Coating System

上俗大学

Industry-level Solution Coating System

On-line Check for Texture of Kilometer's Oxide Buffer on Untextured Metallic Tapes

10m 50m	100m	200m	300m	400m
---------	------	------	------	------

Evaluation Method Developed for Texture of Oxide Buffer

Direct comparison of time dependence of In-situ RHEED pattern and ex-situ xray Phi scanning

(024)

388 388

2576

2034

11493

902

\$1.7
Industrial Process for MOD-RBaCuO Coated Conductors

Oxygenation

High-temperature Crystallization

Dramatic Reduction For Pyrolysis Time of MOD

Δ

- Pyrolysis time reduced to be as short as one minute using extremely low F-content solutions
- Smooth and dense films obtained at a pyrolysis rate as high as 25 K/min

Li *et al.*, *Physica C*, 537(2017), 29–33. Lu *et al.*, IEEE Trans. Supercond. 29(2019)6602805

- $\Delta G < 0$, Possible reaction
- $\Delta G = 0$, Balanced reaction
- $\Delta G > 0$, Impossible reaction

$$G_T^{\theta} = \sum v \Delta G_{f,T}^{\theta}(products) - \sum v \Delta G_{f,T}^{\theta}(reactants)$$

tempurature($^{\circ}$ C)

Phase Formation, nucleation and growth of MOD-derived YBCO

 $|\Delta\mu|$ (Head) < $|\Delta\mu|$ (Middle) < $|\Delta\mu|$ (End)

Li *et al.*, *Physica C*, 537(2017), 29–33. Lu *et al.*, IEEE Trans. Supercond. 29(2019)6602805

Critical Current for Typical MOD-HTS Tapes at SCSC

IC (А) 500.0	<u>200</u>	<i>I</i> c~520A/1 319aU 200m-leve @77K, se	2mm-w el elf-field			
1c [A]	50.000 100.000	position [m]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200.000	by Tapestar	Man Man
300.0	/c~500A/12m 500m-level	nm-w	临界电流化	c (77K, 12	2mm) ≧ 500A;	
200.0	@77K, self-	field	连续长度	≧ 500 米;		
100.0			性能超过美	美国AMSC 、	欧洲d-nano同类产品	8
U.U- * ,	100.000	200.000	position [m]	300.000	400.000	

ব

Shanghai Breative SuperBon

Latest 4mm-wide products tested by R2R transport lc measurement

R2R system developed for continuous Ic measurement of HTS tapes as long as 1 km with a higher running rate

Texture Properties for MOD HTS Layers

Latest developed Reel-to-Reel XRD: Defect and performance analysis tool

—/c along several hundreds of long tapes reaching 110-150 A/4mm-w (77K, self field),

-evidencing the costeffective MOD technique promising.

Typical performances for 12mm/4mm-wide products

AMSC 36.5 MW, 120 rpm ship propulsion motor

□ 中国在MOD化学法 2G超导带材领域

□超过AMSC和德国 同类企业

MECHANICAL PROPERTIES	Type 8501 (4.8 mm)	Type 8502 (12 mm)
Average thickness:	0.17 mm - 0.21 mm	0.18 mm - 0.22 mm
Minimum width:	4.70 mm	11.9 mm
Maximum width:	4.95 mm	12.3 mm
Minimum double bend diameter (RT):	30 mm ⁱ	30 mm ⁱ
Minimum double bend diameter for spliced wire (RT):	100 mm ⁱ	100 mm ⁱ
Maximum rated tensile stress (RT):	150 MPa ⁱ	150 MPa ⁱ
Maximum rated wire tension (RT):	12 kgi	30 kgi
Maximum rated tensile strain (77K):	0.25% ⁱ	0.3% ⁱ
Maximum rated C-Axis stress:	20 MPa ⁱ	20 MPa ⁱ

ELECTRICAL PROPERTIES	Type 8501 (4. mm)	Type 8502 (12 mm)
Minimum amperage (lc)"	Average Engine ring current density - Je A/cm ²) ^{III}	Average Engineering current density - Je (A/cm ²)
80 A	8,700 A/cm	—
90 A	9,800 A/cm	—
100 A	10,900 A/cr 2	_
250 A	<u></u>	10,300 A/cm ²
275 A		11,330 A /cm ²
300 A		12,360 A /cm ²

Spliced wire available in long lengths

Insulation options: Contact factory

Second generation HTS wire for power dense coil applications

Type 8501 and 8502

HTS薄膜及涂层导体的人工钉扎

◆ 要求其在液氮温区较高的J_c 和H_{irr}

 可通过提高磁通钉扎提高J_c,
 要求缺陷具有与ξ相近的尺度 (纳米量级)

◆ 在外延高温超导薄膜本征缺 陷密度能达到10⁹cm⁻², 临界电 流密度达10⁶Acm⁻²

◆ 库伯对拆对电流密度 J_{dp} ~10⁸A/cm²

要进一步提高*J_c*,增加缺陷密度,即引入人工强钉扎中心

临界电流密度仍存在一定的提升空间!

涂层导体磁场应用挑战:复杂的磁热相和磁通运动

强烈无序性或热涨落将破坏涡旋点阵,

 $T_{\rm m} \approx 0.1 \epsilon_0 a / \gamma \quad H_{c1} \ll B \ll H_{c2}$

1st order melting line Hm

 $H_m < Hc2$ HTSs $H_m \sim Hc2$ Low-Tc Sc

BG: vanishing of the linear resistivity $\rho = 0$

BG-VG: emergence of a hysteretic magnetization

With finite disorder, the Abrikosov lattice gives way to

- vortex glass at high fields
- Bragg glass at low fields

涂层导体磁场应用挑战:复杂的磁热相和磁通运动

C.Cai et al., PRB 69(2004)104531

钉扎类型及可能机制

$$G_{s} = G_{n} + \int_{V} \left\{ \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} + \frac{1}{4m} \left| -i\hbar\nabla\psi - \frac{2e}{c} A\psi \right|^{2} \right\} d_{V} + \int_{V} \left\{ \frac{B^{2}}{8\pi} - \vec{B} \cdot \vec{M} - \frac{\vec{B} \cdot \vec{H}_{ex}}{4\pi} \right\} d_{V}$$

Y调制 (芯钉扎) B调制 (磁钉扎)

$$U_{mp} = -\vec{m}_0 \cdot \vec{B}_{v,i}(\vec{R}_d)$$

$$U_{mp}(r) = -\int_{v_f} \vec{M}(\vec{r}') \cdot \vec{B}_v(\vec{r} - \vec{r}') d^3 r'$$

	芯钉扎	磁钉扎
起源	₩空间调制	B空间调制
特征尺度	相干长度 &	·穿透深度 λ
钉扎对象	涡旋芯	涡旋整体
钉扎能温度依赖关系	正比于 1-7/7 。	几乎独立于 7
钉扎中心灵活性	预先固定	受外场调制

PRB 69, 214504 (2004)

不同维度钉扎中心vs 磁传输各向异性

a) 0D随机分布的原子级点状缺陷;

b)1D缺陷(包括位错、自组装纳米棒、辐照柱状 缺陷等);

c)2D平面缺陷(包括孪晶界、堆积层错和本征层 状结构等);

--- 有效改善磁场//c-axis的磁通钉扎

d) 3D较大尺寸的随机分布缺陷(包括稀土氧化物 颗粒、二次相颗粒、缺陷团簇和孔(SuST 31 (2018) 034004)

不同维度钉扎中心的演变及其对Jc影响

I. A. Sadovskyy et al.(ANL), PANS, 116(2019)10291-10296

不同维度磁通钉扎中心 vs. 磁传输各向异性调制

不同维度磁通钉扎中心 vs. 磁传输各向异性调制

临界电流密度

$$J_c^{is}(H,\Theta) = J_c^{is}(\widetilde{H}_{eff})$$

$$\widetilde{H}_{eff} = H\mathcal{E}(\Theta)$$

$$\varepsilon(\Theta) = (\cos^2 \Theta + \gamma^{-2} \sin^2 \Theta)^{1/2}$$

L. Peng, C. Cai, *et al*, J. Apll. Phys. 104, (2008) 033920: J. Phys. D:Apll. Phys. 41, (2008) 155403

J_c(H,Θ) 的标度行为(定性的说明) ◆各向同性缺钉扎结果*J_c*(*H*,Θ) 可仅通过一有效场来描述其对临界 电流密度的贡献将塌陷成一条曲线。

Tachiki-Takahashi 本征钉扎模型:

$$J_{c}(\Theta) = J_{c}(0) |\cos \Theta|^{-0.5}$$

◆二次峰的出现很可能由各向异性缺陷(c轴关联)对磁通钉扎的结果。

各向同性和各向异性缺陷对临界电流的贡献

弱的各向同性钉扎:

$$J_c^{WP}(T) = J_c^{WP}(0) \times e^{-T/T_0}$$

强的各向异性钉扎:

$$J_{c}^{SP}(T) = J_{c}^{SP}(0) \times e^{-3(T/T^{*})^{2}}$$

随温度呈缓慢下 降趋势

各向同性、各向异性共同钉扎:

$$J_{c}^{MP}(T) = J_{c}^{WP}(0) \times e^{-T/T_{0}} + J_{c}^{SP}(0) \times e^{-3(T/T^{*})^{2}}$$

◆ 低温下,各向同性缺陷钉扎占重要地位 ◆ 随着温度的增加,各向异性缺陷起主导作用,各向同性 缺陷钉扎作用迅速减弱至消失

L. Peng, C. Cai, *et al*, J. Apll. Phys. 104, (2008) 033920

L. Peng, C. Cai, et al, J. Phys. D:Apll. Phys. 41, (2008) 155403

准多层二次相掺杂:制备

Enhanced flux pinning: at high fields Crossover behavior: temperature dependent

 ★ Magneto-resistance further evidences enhanced flux pinning at high fields
 ★ IRL line shifted upwards, the lower T, the larger gap ⇒ temperature dependence of crossover behavior

多元/多层HTS薄膜:磁传输和磁热相图的调制

C. Cai et al., APL. 84(2004)377

低维柱状缺陷或无序的高效钉扎

 $U_{\rm k} \approx \frac{\epsilon_0 a_\Phi}{1} \ln \frac{a_\Phi}{1}$

◆高浓度Zr掺杂后的1D缺陷 vs. 磁场各向异性Jc,
 ◆大温度范围高于本征钉扎的磁场平行c-axis的Jc
 ◆随温度降低磁各向异性得到大大抑制

Nanocomposite Coated Conductors

A reality and yet continuously improving and breakout

Courtesy of V. Selvamanickam -adapted

苏新所MOCVD超导层工艺

柱状钉扎大幅度提升 磁场性能

0

0

50

100

150

I@77K, s.f. (A/4mm)

200

250

Tunable defect landscapes under high growth rates: from strongly correlated pins to random ones

At 30 K 1 T, LF increases from 3.0 to 3.5 At 4.2 K, 10 T, LF increased from 3.1 to 4.5

Pinning behaviors of APCs EuBCO films (mass product)

✓ High consistency of lift factor among different batches

✓ High pinning force at 4.2 K, high magnetic fields.
 ✓ Radom Pinning machinimas is dominated.

Some data are from D. Abraimov et.al, "Comparison of in-field transport Ic , Jc, and Fp for R&D and production ReBCO tapes", EUCAS 2017, Geneva, 2017

■ 异位法MOD薄膜的二次掺杂

Precursor

•

Y,Cu,Os, CuO, BaF,, BZO

1.高温晶化前增加中温处理

(a)

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 2016

Supercond. Sci. Technol. 30 (2017) 055008

3.添加预成型的纳米颗粒

BZO

- 离散分布的二次相会与薄膜中其他 缺陷(Y2O3、孪晶晶界、面堆叠 位错等)起协同钉扎作用
- 属于三维钉扎方式

ACS Appl. Nano Mater. 2020, 3, 5542–5553

掺杂Zr/Hf/Mn/Sn等元素:

二次相BMO尺寸分布大

二次相BMO分布不均匀

细化二次相手段

离子辐照 对超导材料磁传输及各向异性的影响

柱状缺陷

柱状、点

点缺陷

离子辐照 对超导膜磁传输及各向异性的影响

离子辐照

- 尤其对溶液法长带REBCO适用
- 易于控制缺陷

- density can be controlled via the irradiation dose
- **morphology of the defect** (points, cascades and their size, linear tracks) can be controlled by **the choice of the incoming particle**.

Kwok et al., Rep. Prog. Phys. 79 (2016) 116501 (39pp)

离子辐照 对超导膜磁传输及各向异性的影响

较低能量离子的辐照情况:

3MeV-Au

Ref: APPLIED PHYSICS LETTERS 101, 232601 (2012)

离子辐照 对超导膜磁传输及各向异性的影响

Kwok et al., Rep. Prog. Phys. 79 (2016) 116501 (39pp)

RE123薄膜及涂层导体液氮温区和平行*c*-axis下 不可逆磁场和磁通钉扎力密度的人工调控

高密度BZO掺杂RE123薄膜液氦温区 平行*c*轴下的Fp达到1700 GN/m³。

强磁场用第二代高温超导带材研究进展与挑战

蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐 and 豆文芝

Citation: <u>科学通报</u>; doi: 10.1360/N972018-00687

View online: http://engine.scichina.com/doi/10.1360/N972018-00687

Published by the 《中国科学》杂志社

超导与		不可逆磁场	磁通钉扎力密度	参考	
	二次相组份	B _{irr} (77K)	$F_{\rm p}^{\rm max}$ (B//c) GN/m ³	与备注	
	Y123	11	$292(2 \pm 77 K)$	DI D	
	+BaSnO ₃	11	28.3 (3 1,77 K)	PLD	
	(Y,Gd)123	14.0	14 (5 T, 77 K);	MOCUD	
	+15%Zr	14.8	1700 (4.2 K)	MOCVD	
	Sm123	15	28 (77 K)	I TG-PI D	
	+BaHfO ₃	15	20 (77 K)	LIG-FLD	
	Gd123	15.8	23.5(77 K)		
	+BaHfO ₃	15.6	23.3 (77 K)	TLD	
	Y123	8 11	12-16 (77 K)		
	+BaZrO ₃	0-11	700 (4.2 K)	I LD	
	Y123	NA	32.3 (75.5 K)		
	+Ba ₂ YNbO ₆	INA	122 (65 K).	I LD	
ſ	Sm123	12	22 (77 K)	MOD	
L	+BaZrO ₃	12	23 (77 K)	WIOD	
Y123+GBs		3+GBs NA		GB 尺寸从 196	
			15 (77 K)	nm 降到 92 n	
				m	
Y123		NI A	14.3 (77 K)	MOD	
	$+Y_2O_3$	NA	1000 (4.2 K)	颗粒细化	
	纯 Y123	5-7	~4 (77 K)	常规薄膜	
	纯 Bi2223	0.2	NA	1G-HTS 线	
1	乱超导 NbTi	11 (4.2K)	16 (4.2 K)	LTS 线材	

若干应用及共性问题

- > 机械性能Various stresses in service state;
- Electromagnetic force
- Thermal induced stress
- Bending induced stress
- ..
- 成型导体Application handling
- round, isotropic shape wanted
- 无阻焊接Resistance-free Joint technology
- > 性价比 Marketing vs. Price-Performance

Metric	Today	Customer requirement	
Price	\$400/kA-m	<\$ 100/kA-m*	For commercial market entry (small market)
		< \$ 50/kA-m*	For medium commercial market
		< \$ 25/kA-m*	For large commercial market

Four to 15-fold improvement in wire price-performance needed !

- ◆ 新型超导体或超导现象发现层出不穷,可实用化HTS材料屈指可数, 传统的LTS-NbTi/Nb3Sn仍是当前市场应用的主流,冷却介质和运行 成本问题使人们对HTS渴望;
- ◆ 2G-HTS带材基于半导体外延技术发展起来,结构和工艺复杂、难度大。
 磁传输性能和各向异性可通过人工钉扎有效改善,仍然是目前液氮温

区及低温强磁场下性能最优、最值得期待的实用化HTS材料;

◆ 各类基于2G-HTS带材的强电应用示范逐步增多,其服役行为、磁热稳定性需要加强研究。广泛推广存在可能,但需要大幅度提高其成材效

率和性价比

Thank you for your attention

Welcome young people to visit or join our group cbcai@t.shu.edu.cn